Appendix H

Air Quality Technical Analysis

This page intentionally left blank.

AIR QUALITY TECHNICAL ANALYSIS

For the proposed Living with the Bay (LWTB) Stormwater Project, the Clean Air Act general conformity applies to emissions of pollutants and precursor pollutants for which Nassau County is designated as nonattainment or maintenance. Nassau County is a serious nonattainment area for the 2008 8-hour ozone standard, moderate nonattainment for the 2015 8-hour ozone standard, and a maintenance area for the 1971 maximum carbon monoxide (CO) and 2006 24-hour average PM_{2.5} standards (USEPA 2017). Nassau County is an attainment area for the remaining criteria pollutants; therefore, general conformity requirements do not apply to other criteria pollutants in the study area and a *de minimis* evaluation is not necessary.

Table 1 shows the applicable *de minimis* thresholds for each pollutant (the term "precursor" in the table refers to the pollutants). A general conformity determination would not be required if an applicability analysis shows the emissions of the LWTB Stormwater Project during construction and operation would not exceed the *de minimis* thresholds.

Table 1: Applicable General Conformity de minimis Thresholds (for Pollutants for which Nassau
County is Designated as Nonattainment or Maintenance)

Pollutant	Туре	<i>De minimis</i> Threshold (tons/year)	Nassau County Attainment Status	
Carbon monoxide	Direct emissions of CO	100	Maintenance area for 1971 1-hour and 8-hour standards	
Volatile organic compounds	Ozone precursor	50	Non-attainment for 2008 and 20158-hour ozone	
Nitrogen oxide	Ozone precursor and PM _{2.5} precursor	100	standards	
PM _{2.5}	PM _{2.5} Direct emissions of PM _{2.5}		Maintenance area for 2006 24-hour average	
Sulfur dioxide	PM _{2.5} precursor	100	PM _{2.5} standard	

CONSTRUCTION

Construction activities would result in short-term emissions of criteria pollutants from off-road, heavyduty construction equipment (e.g., backhoes, excavators, off-road trucks, graders), haul trucks, construction worker commutes, boat operation (for Smith Pond mechanical invasive species removal), and fugitive dust. Based on the attainment status of Nassau County, a general conformity emissions analysis was prepared for nitrogen oxide (NO_x), volatile organic compounds (VOC), and PM_{2.5}. Diesel equipment and vehicles emit substantially less sulfur dioxide (SO₂) when compared to direct PM_{2.5} emissions, and consequently, the PM_{2.5} precursor SO₂ was not analyzed. As shown in the Table 2, USEPA's National Emissions Inventory data for New York State show that SO₂ emissions from highway vehicles are 22 percent of PM_{2.5} emissions from highway vehicles (USEPA 2014). Therefore, if the general conformity *de minimis* threshold is not exceeded for PM_{2.5} direct emissions, it cannot be exceeded for SO₂.

Table 2: New York State Highway Vehicle Emissions

Pollutant	Emissions in Tons
PM _{2.5}	6,806.86
Sulfur Dioxide	1,486.49

Emissions were quantified using the Motor Vehicle Emission Simulator (MOVES2014b) model for haul truck and worker commute emissions, the NONROAD model for off-road equipment, and USEPA AP-42 procedures for quantifying fugitive dust emissions (EPA 1995).¹ Assumptions regarding equipment requirements, workers, truck trips, and the quantity of soil to be moved were developed for the analysis.

Table 3 summarizes the construction emission analysis results. The general conformity *de minimis* thresholds would not be exceeded.

	СО	NOx	VOC	PM _{2.5}
Off-road heavy equipment	10.6	59.1	2.3	1.7
On-road haul trucks and worker commutes	0.9	3.8	0.2	0.2
Fugitive dust	NA	NA	NA	0.3
Barge Tug	0.4	1.6	0.2	0.1
Total	11.9	64.5	2.6	2.2
General conformity <i>de minimis</i> threshold	100.0	100.0	50.0	100.0
De minimis threshold exceeded?	No	No	No	No

Table 3: 2021 Peak Construction Year Emissions Summary (Tons)

Note: The construction impact analysis incorporates 2018 emissions factors. 2020 emissions factors would be lower, because vehicle fleet mix and equipment incrementally improve each year. As such, use of 2018 emissions factors presents a conservative analysis.

OPERATION

Mobile Sources

The LWTB Stormwater Project would not result in substantial new vehicle trips or result in changes to traffic patterns. Therefore, a mobile source air quality impact analysis for the direct impacts of the Proposed Action is not necessary.

¹ To present a conservative assessment of auto emissions, haul truck emission factors were used.

Standby Backup Generator

For purposes of this analysis, one 350-kilowatt (335 horsepower) diesel backup generator is assumed for the diversion station. Although backup diesel generators could be smaller, assumption of this larger generator presents a conservative analysis.

The annual emissions of backup power generator, based on up to 500 hours of operation (up to approximately 20 days of power outages plus 2 hours of testing each month), were estimated based on their approximate horsepower, fuel type, and USEPA's AP-42. The results of the emergency generator analysis and demonstrated emissions would be below the general conformity de minimis criteria.

Pollutant	Emission Factor (Ibs/hp-hr)	Source	Emissions at 500 hrs/year (Ibs)	Annual Emissions in Metric Tons
Nitrogen Oxide	0.031	AP-42 Table 3.3-1	1,843	0.84
Volatile Organic Compounds	0.0025141	AP-42 Table 3.3-1 (TOC- exhaust plus crankcase)	421	0.19
Sulfur Dioxide	0.00205	AP-42 Table 3.3-1	343	0.16
Particulate Matter	0.0022	AP-42 Table 3.3-1	369	0.17
Carbon Monoxide	0.00668	AP-42 Table 3.3-1	1,119	0.51
Carbon Dioxide	1.15	AP-42 Table 3.3-1	192,625	87.37

Table 4: Emergency Backup Generator – Emissions Estimate

REFERENCES

U.S. Environmental Protection Agency (USEPA)

- 2017 Green Book: New York Nonattainment/Maintenance Status for Each County by Year for All Criteria Pollutants. Available at <u>https://www3.epa.gov/airquality/greenbook/anayo_ny.html.</u> <u>Accessed February 26</u>, 2020.
- 2014 National Emissions Inventory (NEI) Data. Data Query, Tier 1 Summary: New York State--SO2 and PM2.5 Highway. Available at <u>https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data</u>. Accessed March 21, 2020.
- 1995 EPA Compilation of Air Pollutant Emission Factors (AP-42), Section 4.3 Waste Water Collection, Treatment and Storage. Available at <u>https://www.epa.gov/air-emissions-factors-and-</u> <u>quantification/ap-42-compilation-air-emission-factors</u>.

This page intentionally left blank.

Stormwater Project EA

	CO (tons)	NOx (tons)	VOC (tons)	PM2.5 (tons)	CO2 (metric tons)
Off-Road Heavy Equipment	10.6	59.1	2.3	1.7	18,146.39
On-Road Haul Trucks and Worker Commutes	0.9	3.8	0.2	0.2	922.66
Fugitive Dust	NA	NA	NA	0.3	NA
Tender	0.4	1.6	0.2	0.1	59.03
Total	11.9	64.5	2.6	2.2	19128.1
de minimis threshold	100.0	100.0	50.0	100.0	

2021 Peak Construction Year Emissions Summary (tons)

Assume 1/2 emissions of peak year in off-peak years 9,564.04

Off-peak emissions for one year 9,564.04

Total Construction period CO2 emissions 28,692.12

	Total					Emission Factors (g/hp-hr)				
Off-Road	Operating		Load		2	3	87	90	110	
Equipment	Hours	HP	Factor	Туре	СО	Nox	VOC	CO2	PM2.5	
Front-End Loader	4,972	230	0.59	Diesel	2.731342358	3.096777062	0.55161565	664.4466167	0.397769925	
Excavator	4,720	233	0.59	Diesel	0.209644165	0.65384558	0.034214275	541.8551235	0.04040322	
Roller	1,608	132	0.59	Diesel	0.485934029	1.317019732	0.077824105	559.5062445	0.075945997	
Chainsaw	592	7	0.70	Gasoline	261.57832	1.641606606	73.15775896	733.0984329	8.751274705	
Air Compressors	3,380	82	0.43	Diesel	0.725668418	2.201627146	0.126106382	574.0116596	0.114301885	
Grader	4,304	231	0.59	Diesel	0.211558588	0.57323504	0.035852119	537.6089794	0.042295081	
Construction Generator	3,124	33	0.43	Diesel	1.460667365	3.601461825	0.346672415	568.2839336	0.243974107	
Truck	21,856	2424	0.59	Diesel	0.205447965	1.596785849	0.044930899	536.7034	0.035274	
Concrete Mixer	1,120	126	0.59	Diesel	0.948643036	1.921910664	0.134511197	537.4517355	0.136857813	
Vibratory Hammer	252	126	0.59	Diesel	0.948643036	1.921910664	0.134511197	537.4517355	0.136857813	
Mobile Crane	1,172	115	0.47	Diesel	0.357348404	1.243858605	0.080619924	533.118769	0.060935084	
Total Emissions (grams)			9,616,102.94	53,630,782.09	2,091,260.47	18,146,394,069.09	1,499,314.22			
	Total Emissions (tons)				10.60	59.12	2.31	20,002.97	1.65	

Load Factor Source:

Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling <u>https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P10081RV.pdf</u>

Horsepower Source

Nonroad Engine Population Estimates- selected typical HP based on population by HP information <u>https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P10081T6.pdf</u>

		2	3	87	90	1.1	116	117
On-Road						PM2.5	PM2.5	PM2.5
Trucks		СО	NOx	VOC	CO2	Exhaust	Brakewear	Tirewear
Haul Truck	grams/VMT	1.4473477	6.21224313	0.266955	1672.61	0.2507804	0.0127824	0.004824
Auto	grams/VMT	1.4473477	6.21224313	0.266955	1672.61	0.2507804	0.0127824	0.004824
	Total Grams	798,400	3,426,857	147,260	922,661,235	138,338	7,051	2,661
	Total Tons	0.88008	3.77746	0.16233	1,017.05962	0.15249	0.00777	0.00293

Peak Annual Haul Truck Trips (Roundtrips)	593
Ave. Roundtrip Distance (miles)	50
Peak Annual Haul Truck VMT	29,630
Peak Annual Employee Commutes (Roundtrips)	10,440
Ave. Roundtrip Distance (miles)	50
Peak Annual Employee Commute VMT	522,000

Fugitive Dust

AP 42 13.2.4 Load	9 42 13.2.4 Loading and Unloading Material into trucks				umptions	grams/lb	
						453.592	
				PM1	LO PM	25	
	(11) 13			0.3	5 0.0	53	
	$\left(\frac{0}{5}\right)^{1.5}$		Wind Speed (r	nph) 5			Truck Loading
E = k(0.0032)	$(M)_{14}$ (pound [lb]/to	n)	Moisture Cor	itent 12.00	0%		Emission Factor in lbs/ton
	$\left(\frac{1}{2}\right)^{1}$		Silt Cor	itent 8.50	1%	PM10	0.05751833
				-		PM2.5	0.00870992
where:							
F =							
E = emissi k = particl	on factor e size multiplier (dime	ensionless)					
U = mean	wind speed, meters pe	r second (m/s) (miles	per hour [mph])				
M = materi	al moisture content (%	6)					
							500
ant states	terte e al com	1		C 11		Annual Truck Trips	593
The particle size n	nultiplier in the equation	h, k, varies with aerodyn	amic particle size rang	ge, as follows:			
	A and mania Dart	iala Sina Multiplian (b) l	For Fountien 1			Cubic Yards per Truck	12.5
	Aerodynamic Part	icie Size Multiplier (k)	For Equation 1				
< 30 µm	< 15 µm	< 10 µm	< 5 µm	< 2.5 µm			7 407
0.74	0.48	0.35	0.20	0.053ª		LONS	7,407
^a Multiplier for <	2.5 µm taken from Ref	erence 14.					
						PM2.5 lbs - Loading	64.5179157
					PM2.5	bs - Loading and Unloading	129.035831
						PM2.5 Tons- Uncontrolled	0.06451792

Fugitive Dust

AP 42 11.9

Topsoil removal by scraper Total quantity of soil moved 0.058 lbs of TSP/ton 7,407 cubic yards

lbs of TSP Tons of TSP Tons of PM2.5 assuming 1 cubic yard 429.6296296 of soil weighs 1 ton 0.214814815 0.022555556 0.105 PM2.5 scaling factor

Wind erosion of exposed areas

Tons of TSP Tons of PM2.5 0.38 TSP tons/acre per year 60 total project acres 15 25% exposed at one time 5.7 0.5985 0.105

	Total PM2.5 from fugitive dust-
0.685573471	uncontrolled
0.342786736	With 50% Reduction for Dust BMPs

<u> Tender - Main (Propulsion)</u>				Emission factors (g/bhp-hr)	Emissions - grams	Emissions- Short Tons	
Horsepower	Load Factor	Activity Hours					
920	0.38	252					
			N2O	0.02	1761.984	0.00	
			CH4	0.15	13214.88	0.01	
			NOx	16.34	1439540.928	1.59	
			PM10	0.68	59907.456	0.07	
			PM2.5	0.63	55502.496	0.06	
			VOC	1.67	147125.664	0.16	
			CO	3.86	340062.912	0.37	
			SO2	0.01	880.992	0.00	
			CO2	670	59026464	65.07	

source (Jeanette C Tender):

Port of Oakland 2012 Seaport Emissions Inventory

http://www.portofoakland.com/files/pdf/environment/maqip_emissions_inventory.pdf

Note: VOC assumed equilvalent to ROG